经典回顾之快速排序算法(附 Java 实现案例)

算法   快速排序  
发布于 Jul 11, 2024

今天我们继续回顾一下经典的排序算法之“快速排序”。

概述

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快。

快速排序,采用“分治”的思想,通过一趟排序将待排记录分割成独立的两部分,其中一部分记录均比另一部分的小,然后分别对这两部分记录继续进行排序,以达到整个序列有序的目的。

对于一组数据,选择一个基准元素(base),通常选择第一个或最后一个元素,通过第一轮扫描,比 base 小的元素都在 base 左边,比 base 大的元素都在 base 右边,再有同样的方法递归排序这两部分,直到序列中所有数据均有序为止。

步骤

  • 选择一个基准元素,通常选择第一个元素或者最后一个元素
  • 通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的元素值均比基准元素值小。另一部分记录的元素值均比基准值大
  • 此时基准元素在其排好序后的正确位置
  • 然后分别对这两部分记录用同样的方法继续进行排序,直到整个序列有序。

实例

原始数据:

3 5 2 6 2

选择 3 作为基准

第一轮

从右往左找比3小的,2符合,将2和3对调

2 5 2 6 3

对调一次,查找的方向反向,从左向右找比3大的,5符合,对调

2 3 2 6 5

再从右往左找比3小的,2符合,对调

2 2 3 6 5

一轮结束

第二轮

对 [2 2] 采用同上的方式进行,得到

2 2 3 6 5

第三轮

对 [6 5] 采用同上的方式进行,得到

2 2 3 5 6

最终结果

2 2 3 5 6

代码实现(Java)

public class Quick {

    private static int mark = 0;

    /**
     * 辅助交换方法
     * 
     * @param array
     * @param a
     * @param b
     */
    private static void swap(int[] array, int a, int b) {
        if (a != b) {
            int temp = array[a];
            array[a] = array[b];
            array[b] = temp;
            // 找到符合的,对调
            System.out.println("对调" + array[a] + "与" + array[b] + ",得到");
            for (int i : array) {
                System.out.print(i + " ");
            }
            System.out.println();
        }
    }

    /**
     * 新一轮分隔
     * 
     * @param array
     * @param low
     * @param high
     * @return
     */
    private static int partition(int array[], int low, int high) {
        int base = array[low];
        mark++;
        System.out.println("正在进行第" + mark + "轮分隔,区域:" + low + "-" + high);
        while (low < high) {
            while (low < high && array[high] >= base) {
                high--;
                System.out.println("从右往左找比" + base + "小的,指针变动:" + low + "-" + high);
            }
            swap(array, low, high);
            while (low < high && array[low] <= base) {
                low++;
                System.out.println("从左往右找比" + base + "大的,指针变动:" + low + "-" + high);
            }
            swap(array, low, high);
        }
        return low;
    }

    /**
     * 对数组进行快速排序,递归调用
     * 
     * @param array
     * @param low
     * @param heigh
     * @return
     */
    private static int[] quickSort(int[] array, int low, int high) {
        if (low < high) {
            int division = partition(array, low, high);
            quickSort(array, low, division - 1);
            quickSort(array, division + 1, high);
        }
        return array;
    }

    /**
     * 快排序
     * 
     * @param array
     * @return
     */
    public static int[] sort(int[] array) {
        return quickSort(array, 0, array.length - 1);
    }

    public static void main(String[] args) {
        int[] array = { 3, 5, 2, 6, 2 };
        int[] sorted = sort(array);
        System.out.println("最终结果");
        for (int i : sorted) {
            System.out.print(i + " ");
        }
    }

}

测试输出结果:

正在进行第1轮分隔,区域:0-4
对调2与3,得到
2 5 2 6 3 
从左往右找比3大的,指针变动:1-4
对调3与5,得到
2 3 2 6 5 
从右往左找比3小的,指针变动:1-3
从右往左找比3小的,指针变动:1-2
对调2与3,得到
2 2 3 6 5 
从左往右找比3大的,指针变动:2-2
正在进行第2轮分隔,区域:0-1
从右往左找比2小的,指针变动:0-0
正在进行第3轮分隔,区域:3-4
对调5与6,得到
2 2 3 5 6 
从左往右找比6大的,指针变动:4-4
最终结果
2 2 3 5 6 

本次的分享到此结束,希望对你有所帮助。

如果你对我分享的内容感兴趣,欢迎扫码关注公众号:新质程序猿,并设置星标,推送更实时哟!

本文由 黄彦祥 创作,采用 知识共享署名 3.0 中国大陆许可协议 进行许可。
可自由转载、引用,但需署名作者且注明文章出处。